

Operational amplifier (Op Amp)

Characteristics of an *ideal* op amp

- Ideal amplifier for voltage difference

R_{in}: Infinite

- A_v: Infinite
- R_{out} : 0 for voltage output

infinite for current output

➔ transconductance amplifier (OTA)

Zero common-mode gain (or infinite common-mode rejection)

Electronic Circuits 2 (07/1)

Op amp is very often used with feedback

The same result can be obtained by assuming $V^+ = V^-$ (virtual short)

$$V_{s} = V_{o} \frac{R_{1}}{R_{1} + R_{2}}$$
$$\therefore \frac{V_{o}}{V_{s}} = \frac{R_{1} + R_{2}}{R_{2}}$$

What good is it?

Voltage amplifier with negative gain?

$$\frac{V_o}{V_s} = \frac{R_1 + R_2}{R_2}$$
 Voltage amplifier

- Infinite input resistance
 Same gain regardless of R_L
- Gain is stable and can be easily changed

 $V_o = -\frac{R_2}{R_1}V_I$

Current amplifier

weighted summer (adder)

voltage buffer

Op amp for many analog signal processing applications

$$C \frac{d\upsilon_o(t)}{dt} = -\frac{v_i(t)}{R}$$
$$\upsilon_o(t) - \upsilon_o(t=0) = -\frac{1}{RC} \int_0^t v_i(t) dt$$

Integrator

Op amp for many useful analog signal processing applications!

Real Op Amps are not ideal: Input voltage offset

Ideally, $v_o = 0$ if $v^+=v^-$ But, often, $v_o=0$ when $v^+-v^-=V_{os}$ (offset voltage)

Electronic Circuits 2 (07/1)

Solution: Lossy Integrator

$$R_{f}C\frac{dv_{o}(t)}{dt} + v_{0}(t) = -\frac{R_{f}}{R}v_{i}(t) + (1 + \frac{R_{f}}{R})V_{os}$$

$$R_{f}C\frac{dv_{01}(t)}{dt} + v_{01}(t) = (1 + \frac{R_{f}}{R})V_{0S}$$
$$R_{f}C\frac{dv_{02}(t)}{dt} + v_{02}(t) = -\frac{R_{f}}{R}v_{i}(t)$$

 $v_0(t) = v_{01}(t) + v_{02}(t)$

Electronic Circuits 2 (07/1)

$$R_{f}C\frac{dv_{o1}(t)}{dt} + v_{01}(t) = (1 + \frac{R_{f}}{R})V_{os}$$

$$v_{o1}(t) = v_{o1,0}\exp(-\frac{1}{R_{f}C}t) + (1 + \frac{R_{f}}{R})V_{os} = (1 + \frac{R_{f}}{R})V_{os} \text{ (Assuming } v_{o1,0} = 0)$$

$$R_{f}C\frac{dv_{o2}(t)}{dt} + v_{02}(t) = -\frac{R_{f}}{R}v_{i}(t)$$
Assuming v_i(t) is a step function at t= with V_{i,on}

$$v_{o2}(t) = -\frac{R_{f}}{R}V_{i,on}[1 - \exp(-\frac{t}{R_{f}C})]$$

Electronic Circuits 2 (07/1)

$$\therefore v_{o}(t) = v_{o1}(t) + v_{o1}(t)$$

= $(1 + \frac{R_{f}}{R})V_{os} - \frac{R_{f}}{R}V_{i,on}[1 - \exp(-\frac{t}{R_{f}C})]$

Is this an integrator?

Yes, if $t << R_fC$ $\rightarrow f >> 1/(R_fC)$

W.-Y. Choi