Lect. 13: Operational Amplifiers

Operational amplifier (Op Amp)

Lect. 13: Operational Amplifiers

Characteristics of an ideal op amp

- Ideal amplifier for voltage difference
R_{in} : Infinite
A_{v} : Infinite
$\mathrm{R}_{\text {out }}$: 0 for voltage output
infinite for current output
\rightarrow transconductance amplifier (OTA)
Zero common-mode gain (or infinite common-mode rejection)

Lect. 13: Operational Amplifiers

Op amp is very often used with feedback

$$
\begin{aligned}
V_{o} & =A_{v}\left(V_{s}-0\right) \\
& \rightarrow+/- \text { supply voltage }
\end{aligned}
$$

With feedback

$$
\begin{aligned}
& V_{o}=A_{v}\left(V_{s}-V_{o} \cdot \frac{R_{1}}{R_{1}+R_{2}}\right) \\
& V_{o}\left(1+\frac{A_{v} R_{1}}{R_{1}+R_{2}}\right)=A_{v} V_{s} \\
& \therefore \frac{V o}{V_{s}}=\frac{A_{v}}{1+\frac{A_{v} R_{2}}{R_{1}+R_{2}}} \simeq \frac{R_{1}+R_{2}}{R_{1}}
\end{aligned}
$$

Lect. 13: Operational Amplifiers

The same result can be obtained by assuming $\mathrm{V}^{+}=\mathrm{V}^{-}$ (virtual short)

$$
\begin{aligned}
& V_{s}=V_{o} \frac{R_{1}}{R_{1}+R_{2}} \\
& \therefore \frac{V_{o}}{V_{s}}=\frac{R_{1}+R_{2}}{R_{2}}
\end{aligned}
$$

Lect. 13: Operational Amplifiers

What good is it?

$\frac{V_{o}}{V_{s}}=\frac{\boldsymbol{R}_{1}+\boldsymbol{R}_{2}}{\boldsymbol{R}_{2}} \quad$ Voltage amplifier

- Infinite input resistance
- Same gain regardless of R_{L}
- Gain is stable and can be easily changed

Voltage amplifier with negative gain?

$$
V_{o}=-\frac{R_{2}}{R_{1}} V_{I}
$$

Lect. 13: Operational Amplifiers

Current amplifier

$$
A_{i}=\frac{i_{4}}{i_{i}}=\left(1+\frac{R_{2}}{R_{3}}\right)
$$

Lect. 13: Operational Amplifiers

(a)
weighted summer (adder)
voltage buffer

Op amp for many analog signal processing applications

Lect. 13: Operational Amplifiers

$$
\begin{gathered}
C \frac{d v_{0}(t)}{d t}=-\frac{v_{i}(t)}{R} \\
v_{o}(t)-v_{o}(t=0)=-\frac{1}{R C} \int_{0}^{t} v_{i}(t) d t
\end{gathered}
$$

Integrator

Op amp for many useful analog signal processing applications!

Lect. 13: Operational Amplifiers

Real Op Amps are not ideal: Input voltage offset

$$
\text { Ideally, } \mathrm{v}_{\mathrm{o}}=0 \text { if } \mathrm{v}^{+}=\mathrm{v}^{-} \quad \text { But, often, } \mathrm{v}_{\mathrm{o}}=0 \text { when } \mathrm{v}^{+}-\mathrm{v}^{-}=\mathrm{V}_{\mathrm{os}} \text { (offset voltage) }
$$

Lect. 13: Operational Amplifiers

What happens to Op Amp integrator?

It does not work as an integrator!

Lect. 13: Operational Amplifiers

Solution: Lossy Integrator

$$
\begin{aligned}
& \frac{v_{i}(t)-V_{O S}}{R}+\frac{v_{0}(t)-V_{O S}}{R_{f}}+C \frac{d\left(v_{o}(t)-V_{O S}\right)}{d t}=0 \\
& R_{f} C \frac{d v_{o}(t)}{d t}+v_{0}(t)=-\frac{R_{f}}{R} v_{i}(t)+\left(1+\frac{R_{f}}{R}\right) V_{o s}
\end{aligned}
$$

Lect. 13: Operational Amplifiers

Lect. 13: Operational Amplifiers

$$
\begin{aligned}
& R_{f} C \frac{d v_{O 1}(t)}{d t}+v_{01}(t)=\left(1+\frac{R_{f}}{R}\right) V_{o s} \\
& \left.v_{o 1}(t)=v_{o 1,0} \exp \left(-\frac{1}{R_{f} C} t\right)+\left(1+\frac{R_{f}}{R}\right) V_{o s}=\left(1+\frac{R_{f}}{R}\right) V_{o s} \text { (Assuming } v_{o 1,0}=0\right) \\
& R_{f} C \frac{d v_{o 2}(t)}{d t}+v_{02}(t)=-\frac{R_{f}}{R} v_{i}(t) \\
& \text { Assuming v } v_{i}(t) \text { is a step function at } t=\text { with } V_{i, o n} \quad \begin{array}{l}
t=0 \\
v_{i 2}(t)=-\frac{R_{f}}{R} V_{i, o n}\left[1-\exp \left(-\frac{t}{R_{f} C}\right)\right]
\end{array}
\end{aligned}
$$

Lect. 13: Operational Amplifiers

$$
\begin{aligned}
\therefore v_{O}(t) & =v_{O 1}(t)+v_{O 1}(t) \\
& =\left(1+\frac{R_{f}}{R}\right) V_{O s}-\frac{R_{f}}{R} V_{i, o n}\left[1-\exp \left(-\frac{t}{R_{f} C}\right)\right]
\end{aligned}
$$

Is this an integrator?

Yes, if $t \ll R_{f} \mathrm{C}$
$\rightarrow \mathrm{f} \gg 1 /\left(R_{\mathrm{f}} \mathrm{C}\right)$

